
major  cha rac te r  and admit a general izat ion of  relat ions both of the f i rs t  and of the second types.  In par t icular ,  
we can take into account creep,  nonorthogonality of the slip lines, dilatational effects [10], and effects of in- 
t e rna l  fr ict ion which have importance for soils and rocks .  
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F O R M I N G  O F  F I B R O U S  L I G H T G U I D E S  W I T H  A 

A Z I M U T H A L  A S Y M M E T R Y  O F  T H E  B I L L E T  

M. E .  Z h a b o t i n s k i i  a n d  A.  V .  F o i g e l '  

S M A L L  

UDC 532.5:535.8:666.189.2 

One possible type of fibrous lightguide is a t r ansparen t  microcap i l l a ry .  Small losses  with the propaga-  
tion of light along a lightguide are possible if its t r ansve r se  c ross  section is sufficiently close to a concentr ic  
round r ing and is constant  over  the length of a fiber. F rom a physical  point of view, the process  of the fo rm-  
ing of a lightguide can be represen ted  as the flow of an incompressible  Newtonian liquid with ava r i ab l ev i s cos t t y  
(some po lymers  are not Newtonian liquids and are  therefore  not discussed here).  

Art ic le  [1] d i scusses  the pulling of a microcap i l l a ry  f rom a billet, i.e., a solid hollow cylinder of given 
dimensions.  The billet and all the external  conditions under which the pulling was done were assumed to be 
ax i symmetr ic ,  as a resu l t  of which the mic rocap i l l a ry  pulled was also ax isymmetr ic  with a round c ross  sec-  
tion. In [1] equations for the form of the jet (the t ransi t ion from the billet to the microcapil lary} were ob- 
tained and the dependence of the dimensions of the mic rocap i l l a ry  on the pa rame te r s  of the p rocess  was found. 
We discuss  below the pulling of  a mierooapiUary  from a billet, taking account of the smal l  real  nonaxisymmet-  
r i c  cha rac te r  of the lat ter ;  the degree of nonax isymmet ry  of the microcap i l l a ry  is found and its dependence 
on the pa rame te r s  of  the process  is investigated. 

w I n a l l a s p e c t s ,  except  for the assumption of the nonaxisymmetry  of the process ,  the statement of the 
problem is the same as in [1]: the t empera tu re  distribution is assumed to be given; in all c ross  sections,  the 
thickness of the wall of the billet and the jet is assumed to be smal l  in compar ison  with its radius;  by virtue 
of the thinness of the wall, the t empera tu re  is assumed to be identical at all points of the t r ansve r se  c ross  s ec -  
tion of the jet and to depend only on the longitudinal coordinate z; the viscosi ty  is a known function of the tem-  
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Fig. 1 

]~ ra tu re  and its distr ibution is descr ibed by a given function ~ (z) (Fig. 1, where on the right there  are given 
~r profi les  of the t empera tu re  of the furnace and the viscosi ty  of the mater ia l ) ;  V (z) + oo as z--  �9 ~0; the 
:rate of feeding of the billet u 0 and the ra te  of pulling of the microcapi l la ry  uoo are assumed to be given quanti- 
'~ies. Account is taken of the surface  tension ~ and the p re s su re  drop of the air Ap =Pl -- P2 between the chan- 
:ael and the external  medium; the values of or, Pt and P2 are  assumed to be identical for all the sections of the 
jet. 

The form of the t r anverse  c ross  section of the billet (Fig. 2, where, for clar i ty,  the nonaxisymmetr ic  
cross  section and the thickness of the wall are great ly  enlarged) is regarded as given and is descr ibed by two 
functions of the azimuthal angle ~p: h0(~p) , the thickness of the wall, and ~0(qD), the mean radius.  In the expan- 
sion of the functions h0(qp) and ~0@) in Four ie r  se r ies  

[ + l [ ] h o(q,) h(o ~ i §  ~z~,ocosn~ ; %(~+) 7~ ~ ~ (1.1) = = t �9 Pn,0 cos nqo 

the values of h0 (~ and ~0) are mean values; ~n,0 and Pn,0 are the relat ive amplitudes of the harmonic  of the 
thickness of the wall and the mean radius.* By a choice of the origin of the sys tem of coordinates,  we can 
always obtain 

Pl, o = 0. (1.2) 

The nonaxisymmetry  of the t r ansve r se  c ross  section of the billet is assumed to be small :  

}• o{ << t;  IPn, ol << t ,  n = 1, 2,  3 . . . .  (1 .3 )  

The sought quantity is the form of the t r ansve r se  c ross  section of the microcapi l la ry ,  descr ibed by the func- 
tions h~(cp) and ~':r 

By virtue of the ax i symmet ry  of all the external  conditions, in the f i rs t  approximation with r e spec t  to 
small  values of (1.3), the mean values of h~ ) and ~ )  do not depend on the values of Xn,0 and On,o and can be 
found f rom a solution of the ax i symmetr ic  problem [1], while the relat ive amplitudes of the n-th harmonic  in 
(1.4) depend on the relat ive amplitudes only of this n-th harmonic  in (1.1): 

• o~ = Anxn,o + BnPn,o; 

p.,oo = Cnxa, o + D,~p,,.o. 

(1.5a) 

(1.5b) 

The aim of the work was to determine the coefficients of the t ransi t ion An, Bn, Cn, and D n and to invest-  
igate their  dependence on the pa rame te r s  of the p rocess .  

w We seekthe  solution of the problem posed in the form of a small  [by vir tue of (1.3)] nonaxisymmetr ic  
per turbat ion of the ax i symmetr ic  flow of the liquid, found in [1]. We represen t  the p res su re  p, the components 

* In formula  (1.1) the expansion in t e rms  of sin n~v is omitted. An analysis of the total solution taking account 
of sin n~ shows that taking them into considerat ion yields nothing new. 
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Fig. 2 

of the veloci ty  of the flow of liquid Vr, v~,  Vz, the rad i i  of the in ternal  and ex te rna l  boundaries  of the jet  
r 1 (z, r r2(z, ~v), and the a s soc ia t ed  th ickness  of the wall  h(z, ~) and mean radius  of the jet ?(z, ~p) 

h(z, r = rs(z, q~) - rl(z,  ~); r(z, q~) = (tl2)[r~(z, ~) + r~(z, ~)l (2.1) 

in the fo rm of the sum of quanti t ies  of the zero  (with r e s p e c t  to powers  of Xn,0 and Pn,0) and f i r s t  a p p r o x i m a -  
t ions 

p p(O) 4- pO);  v r = v,. 4- v~ 0 = v(o,~ (t) = = 4 - ~  ; 

, (n .  h(O) _ r (~ (2 .2 )  r~=r~  ~ r~=r~. 0) 4-,2 , h =  4-h('); r 4 - r  ('J. 

Quanti t ies with the s u p e r s c r i p t  1, depending on co, a re  sma l l  in compar i son  with the cor responding  quan- 
t i t ies  with the s u p e r s c r i p t  0, which do not depend on the angle ~p and which desc r ibe  a x i s y m m e t r i c  flow. 

The equations of a x i s y m m e t r i c  flow, obtained in [1 ] by s impl i f ica t ion  of the N a v i e r - S t o k e s  equations,  
the equation of continuity, and the boundary conditions at the l a t e ra l  su r f aces ,  on the bas is  of the assumpt ion  
of the re la t ive  thinness of the wall  of the billet  and the sma l lnes s  of the angle of inclination of the jet 0 in the 
plane r - z ,  have the fo rm 

h(O)/:(o) o / - o  << t; (2.3a) 

O ~,r{o ~ << 1, (2.3b) 

(7/0 is the min ima l  v iscosi ty) .  
ables  

where  l is the unit c h a r a c t e r i s t i c  d imension along the z axis,  having the sense  of the length of the heating 
zone: 

1 / % =  i dzDl(Z) (2.4) 

After  the introduction of the d imens ion less  p a r a m e t e r s  and d imens ion less  v a r i -  

U ~ = - - "  w = l n U |  P =  " Q =  " 
, ,o '  2,~,,0,',(~~ ' ,lo,,d,(o~ ' 

s(z) = Wno/Z i dU~(O ( s ( - ~ o )  = o; s ( + ~ )  = w); 
- - o o  

H Is (z)l  = h~~176 R l ,  (z)l  =;~176 U Is (z)l  = v~~ 

(2.5) 

(2.6) 

(2.7) 

the equations and boundary conditions for the d imens ion less  longitudinal veloci ty and the mean radius  and wall  
th ickness  of the jet have the fo rm [1] 

dU/ds = yU - -  QRU/3; 
dR/ds PR~/3 - -  QR212 - -  u 

(2.8) 

U{,_~ = t; Rls= * = t; U[,=,, = U=; (2.9) 

H(s) = R - ' ( s ) U - ' ( s ) ,  ( 2 . 1 0 )  
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where  constant T is de termined  f rom the boundary conditions (2.9). Integration of (2.8) gave an express ion  
for the dimensions of the mic rocap i l l a ry  h~ ) and ~ )  : 

h~ ) = h(o~ (P, Q, w); r~ ) = r(o~ - t  (P, Q, w). (2.11) 

In [1] a detailed curve was given for the function K, and, f rom an analysis of this curve,  it was shown 
l~hat the following are  of in teres t :  

Q ~ 3; / f > i .  (2.12) 

w Inthe r - th  and rp-th components of the N a v i e r - S t o k e s  equation, in which, in view of the smal lness  of 
the Reynolds number ,  nonlinear t e r m s  are  omitted,  on the basis of (2.3b) we neglect  the t e r m  32V(o(l)/Or2 in 
compar i son  with 02V(o(1)/0z 2 and the t e r m ~ v q ( i ) / b t  2 in compar ison  with 02v(tT/0 r 2. In the equation of cont i -  
nuity, taking into considera t ion that v z (I7 ~Vr(I) ' .~1] neglect  the t e r m  0 Vz (17 / ~z in compar ison  with ~ vr(t)/  
Or. After these s implif icat ions,  the p r e s s u r e  p and the t r an sv e r se  components of the veloci ty  Vr (1) and 
v(p (1) sat isfy the two-dimensional  N a v i e r - S t o k e s  equations and the two-dimensional  equation of continuity, into 
which the var iable  z en te rs  only pa ramet r i ca l ly :  

Vtp (t) = ,l(z) V~V~); Vt.V(~ = 0, (3.17 

(.0 t o )  vt0) (Vr(i),V~o(t)). where Vt= Or' r ~ is the opera tor  of differentiat ion over  the t r ansve r se  coordinates ;  = 

Equations (3.1) reduce  to a biharmonic equation for the s t r e am  function, solving which we have 

v(~ t) = x.~ O~ (r) cos nq)----- (aff2 -4- bl -l- q ln r + dff-2) cos nq) -t- 

+ Y, (a=r'~ +~ -t- b=r ~-t  ~ cnr -~+1 + d.r -~ -~)  cos n~ 
n ~ 2  

(3.2) 

and analogous express ions  for vo  (t7 and p(1), containing the a rb i t r a ry  constants an, bn, Ca, and dn. A par t ia l  
solution is found f rom the r equ i r emen t  of the sat isfact ion of the boundary conditions at the la tera l  surfaces  of 
the jet, which, af ter  l inear izat ion taking account of the smal lness  of all the quantities depending on the angle (o, 
have the form 

ov(t)1 (_ l)io [ ~2~,) ] o~r 1 

i \ - ~  ) 
i = 1, 2; (3.3) 

o~ J r=r~ ~ r  Pl "4 p(0) -t- 2+i ~.~, i = i,  2 (3.4) 

(i =1 cor responds  to the internal  surface  and i=2,  to the external  surface) .  We seek  the per turbat ion  of the 
thickness of the wall hO)(z, q~) and the mean radius of the jet  ~(t)(z, ~7 in the form 

h (') (z, (p) = h(0 ~ ~ a ,  is (z)] cos n~; r (') (z, r = r(0 ~ ~ ~ is (z)l cos n~. (3.5) 
n ~ i  n----I 

For the values of ri(D(z , qo), f rom formulas  (2.1) and (2.2) it follows 

r~ 1) (z, qo) = r~ ~ ~ {(-- 1)! a~ [s (z)]. e/2 + 13~ [s (z)l} cos nq~, i= 1,2, (3.6) 

where  

~(0)/r<0) 
~ - - - - - r ~ O  , 0 �9 

Substituting formulas  (3.2) and (3.6) and the values of the zero  approximation p(0), Vr(0)from [1] into (3.3), 
(3.4), for each value of n we obtain a sys tem of four l inear  algebriac equations with respec t  to an, bn, Cn, dn, 
containing a n and fin in the r ight-hand side. Determining the constants an, bn, Cn, d n f rom this sys tem and 
substituting them into (3.2), we find express ions  for the Four i e r  coefficients ~}, of the per turbat ion of the 
rad ia l  velocity Vr(i) in t e rms  of the Four i e r  coefficients a n and f~n of the per turbat ion of the thickness of the 
wall h (17 and the mean radius ~(l), which we shall  not write out. 
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To obtain a c losed s y s t e m  of equations with r e s p e c t  to the values of an and fin, a connection mus t  be e s -  
tabl ished between the change in the pe r tu rba t ions  of the in ternal  and ex te rna l  boundaries  along z and the p e r -  
turbat ion of the r ad ia l  veloci ty .  To this end, the equation 

dri/dt = V,[rfri  , i = 1, 2, 

connecting the to ta l  change with t ime  of the radius  of  the boundary with the r ad ia l  velocity,  is expanded in 
t e r m s  of the per turba t ion  

dr~~ = g~176 dr~"ldt = t"r' ,,, 7' ,~'")~"~ ~ = ' t ,  2. (3.7) 

Substituting Vr(1) and (3.6) into (3.7) and taking into cons idera t ion  that  

dt = dzlv~ ~ 

we obtain a s y s t e m  of d i f fe ren t ia l  equations for  the values  of ~n and/3 n . We wri te  them sepa ra t e ly  for n = 1 
and for  n>--2, s ince the F ou r i e r  coeff ic ients  in (3.2) for  n = l  and n ~ 2  are  wri t ten di f ferent ly .  Using (2.5)- 
(2.7), we have 

[ dct__j ~- i ax dU 
ds 2 U ds ' 

d~t_ 1 ~, dU 
" ~ - -  2 U ds ' 

( 3 . 8 )  

I ~  an I r 
~ - ,  n~> 2; 

- -  ~-W[.--~=i--I~.+2Hp-] - - " ~ . T ~ _ I ~ P , , 1  6P n ,  1 ~ndU 
2 U d,v" 

(3.9) 

(3.zo) 

where  R(s), H(s), U(s) a re  d imens ion less  quanti t ies  of  the zero  approximat ion.  The coeff icients  with an, /3 n 
in the r ight -hand s ides  of (3.9), p ropor t iona l  to P and Q, a re  expanded in powers  of a sma l l  [in accordance  
with (2.3a)] p a r a m e t e r  c ,  and only the leading t e r m s  are  re ta ined .  In the r ight-hand side of (3.10), the f i r s t  
t e r m  is re ta ined  along with the second, containing 1/e 2, s ince,  speci f ica l ly ,  it is poss ible  that  P = 0 ,  Q > 0. 

A compar i son  of (3.5) and (1.1) gives the initial  conditions for oh, fin: 

~ - 1 , = o  = X . ,o ;  ~8.Js-~o--.12~,.o,_p_ = t ,  2,  3~_~ . . ( 3 . 1 1 )  

~4. Le t  ot~ n, fltn and ~ ,  ~ be  solut ions fo r  the ini t ial  conditions 

~,:1.=o = t;  P' ls=o = o; ( 4 . z )  

= ; I , = o  = o; e; , I , -o = 1 (4 .2 )  

Then f rom (1.4), (1.5), (2.11), (3.6), (3.11), for  the sought coeff icients  of the t rans i t ion  An, Bn, Cn, D n we have 

Ut/2K-t~"  I B Ut/2K-tcx" �9 2~XZ ~ a o  ~ J S ~ W f  n ~ ao n ] ~ Y O ~  

C,  = U~K~'n  J,=w, D ,  = U~/~K[}'~ ~ - :  . . . . .  (4.3) 

For  n = l ,  f rom (3.8),  (4 .1 ) - (4 .3 )  w e  find 

A ,  - - - -  E - t ( P ,  Q, w); Bz = Cx = O; _D:t = lf(_P,_Q,__w), (4.4) 

f rom which, by vir tue  of (1.2), (1.5),pl ,o=0, which was to be expected.  For  n>--2, we f i r s t  examine  the case  
P = 0 .  The fundamental  solutions of the s y s t e m  (3.9), (3.10), taking account of (2.8)-(2.10), a re  

a , ,  = ( H / R ) X J U - l n ;  [J,, = (~.j + t / 2 ) (H/R)  ~'j-I U - I n ,  

' w h e r e  

Lj = (--1./4)[t -4- | / ( n  z - -  25)/(n" - -  1)1, j = l ,  2 
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[for j = 5, the re  is degenera t ion:  Xt = ~z and the second solution contains the f a c t o r  in(H/R)] .  Combining the 
:fundamental solut ions in such a way as to sa t i s fy  the ini t ial  conditions (4.1) o r  (4.2), f r o m  (4.3), taking account 
of (2.7), (2.11) fo r  n ~ 4 (we l imi t  ou r se lves  h e r e  to this case) ,  we obtain 

/ A ~  K-3/2 sin (v~ ' K) /s inv~;  = - -  -~- tg v n �9 In 

B~=4K-3 /~s in (+tgv~ . lnK)c tgv~;  

C~ = - - l  Bn/eos2v,. D~ = K-~/2 sin v ~ - r - - T t g v . . l n K  sinv~, 

where  

K ~- K(O, Q, w); va = arcsin []/(25 -- n2)/241. 

For  P > 0, Eqs.  (3.9) and (3.10) cannot be solved in quadra tu res .  The sought values of An, B n, C n, D n 
~re found f rom (4.3), a f te r  n u m e r i c a l  in tegrat ion of (3.9), (3.10) for the initial  conditions (4..1) or  (4.2) for 
d i f ferent  va lues  of the p a r a m e t e r s  P, Q, w. 

w E a c h o f t h e e o e f f i c i e n t s  is a function of the th ree  va r i ab les  P, Q, w; here ,  as in [1], the explici t  de-  
pendence on w in the range  of in te res t  to us w =In  ( 1 0 3 ) . . . I n  (105) can be neglected.  

Figure  3 s h o w ,  the dependence of the coeff icients  A n (n =1, 2, 3, 4) on K with different  values  of the 
ra t io  p / Q  =&p/(2(r/~ 0 ), which desc r ibe s  the re la t ionsh ip  between the p r e s s u r e  drop of the a i r  and the p r e s s u r e  
of the fo rces  of sur face  tension.  (The solid line r e p r e s e n t s  P/Q =0; the dashed line r e p r e s e n t s  P/Q =0.2; the 
shor t  dashed-dot  line r e p r e s e n t s - P / Q  =0.75; the long dashed-dot  line r e p r e s e n t s  P/Q = 1. The numbers  on the 
curves  a re  the numbers  of the ha rmonic  n. The unnumbered  curves  with P/Q->0.2 co r re spond  s imul taneous ly  
to n =2, 3, 4.) The r e a s o n  for using K(P, Q, w) as an argument ,  and not Q, is the following: With the condition 
(2.12), there  is always a deviat ion f rom s imi l a r i t y  [1]; the p a r a m e t e r s  of the p roce s s  mus t  be se lec ted  in such 
a way that  the coeff icient  of this deviat ion will not be too great :  

[(,.(o),?.(o)'~l(h(O),'i(o)~li/2__~r, ,n w ) ~  ~.~---tk,~ p~  //V~0 /-o /mini , (5.1) 

since the ra t io  h(~ "(0) is fixed, and the ra t io  h0(~176 for  the billet  cannot be an arl~i trar i ly sma l l  quantity; 
for the typica l  values  of all the p a r a m e t e r s  K .  ~ 2. The l imita t ion on Q flowing out of (5.1) depends on P; t h e r e -  
fore ,  it is not sui table to use Q as an a rgument .  

F igures  4 and 5 give curves  for the coeff icients  Bn, Cn, D n (n =2, 3, 4); the long dashes  r e p r e s e n t  P/Q-- 
0.1. The re  a re  no cu rves  for n = l ,  s ince B I = C  1 =0, and D 1 is of no in teres t ,  by v i r tue  of (1.2). The curves  in 
Figs .  3-5  were  plotted for e =0.1; curves  for e =0.05 and 0.2 do not differ  s ignif icantly f rom those given. 

w Ampli tude inhomogenei t ies  (nonax i symmet ry  of the t r a n s v e r s e  c ross  section) of the billet,  descr ibed  
by the fact  that,  for some number s  n, ~ , 0  ~0 or  Pn,0 ~0, according to (1.5) genera te  az imuthal  inhomogenei t ies  
of ~n ~o and Pn ' f o r  the m i e r o c a p i l l a r y  pulled. The effect  of nonax i symmet ry  of the billet on the mic rocap i l -  
l a ry  i's desc r ibed  by the coeff ic ients  of  the t rans i t ion  An, Bn, Cn, Dn; the s m a l l e r  the values of the coefficients ,  
the m o r e  s t rongly  a re  the ampli tude inhomogenei t ies  smoothed out during the pulling p r o c e s s .  We note that, 
in a r e a l  billet J h~O)un,o I "  I r(0~ ] for n->2; t h e r e f o r e ,  

[Pn, ol N ~]x~, oi; (6.i)  
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this  c i r c u m s t a n c e  m u s t  be taken into account with a pa i rwise  compar i son  of A n and B n, C n and D n. 

An e l ec t rodynamic  calculat ion [2], conf i rmed  by expe r imen t ,  shows that  the losses  with the propagat ion  
of light along a lightguide of the type under  d i scuss ion  depend main ly  on ampli tude inhomogenei t ies  of  the th ick-  
ness  of  the wal ls ;  t he r e fo re ,  we l imi t  o u r s e l v e s  he re  to invest igat ion of the dependence of the coeff ic ients  A n 
and B n on the p a r a m e t e r s  of  the p r o c e s s .  

An ana lys i s  of the cu rve s  for  An, B n shows that,  taking account  of  (6.1) for  n>-2 and P/Q=O in fo rmula  
(1.5a}, both t e r m s  a re  of the s a m e  o r d e r  of  magni tude.  The re fo re ,  in the absence  of a p r e s s u r e  drop (Ap =0), 
az imuthal  inhomogenei t ies  of  the th ickness  of the wall  and the radius  of the bil let  have an approx imate ly  equal  
e f fec t  on the aximuthal  inhomogenei t ies  of the th ickness  of the wall  of  the m i c r o c a p i l l a r y .  

F o r  n -> 2 and P/Q->0.2, the value of B n is sma l l  in compar i son  with unity and, taking account of (6.1), in 
f o r mu la  (1.ba), the second t e r m  can be dropped: 

by v i r tue  of (4.4} this  f o rm u l a  is valid also for n = 1 for  an a r b i t r a r y  value of P/Q. F r o m  the curve  for  A n it 
can be seen  that,  fo rP /Q>-0 .2 ,  the value of A n for  n ->2 does not depend on n. The values  of  A~, A3, A 4 for  K 
1.7 a re  less ,  the g r e a t e r  the value of  P/Q; by v i r tue  of  (4.4), the value of A i does not depend on P/Q. 

Thus,  it follows f rom Figs .  3-5  that ,  with pulling, the re  is a d e c r e a s e  in the r e l a t ive  ampli tudes  of the 
h a r m o n i c s  of  the th ickness  of the wall  and the m e a n  rad ius .  For  the f i r s t  ha rmon ic  (the in terna l  and ex te rna l  
su r f aces  of  the billet  a re  noncoaxial  round cylinders},  the d e c r e a s e  is a lmos t  wholly de t e rmined  by the value 
of the coeff icient  of the deviation f r o m  s imi l a r i ty ;  t he re fo re ,  taking account of l imi ta t ion (5.1), not m o r e  than a 
two-fold d e c r e a s e  in the r e l a t ive  ampli tude of the f i r s t  ha rmonic  of the th ickness  of the wall  is r ea l ly  p e r m i s -  
sible.  F o r t h e  second (the su r f aces  of  the billet a re  e l l ip t ica l  cyl inders)  and succeeding ha rmon ic s  with the 
s a m e  values  of K, a d e c r e a s e  in the re la t ive  ampl i tudes  by 5-10 t imes  is p e r m i s s i b l e .  Conditions w i th P /Q  ~ 
1 a re  p r e f e r a b l e ,  where  in the f i r s t  p lace ,  the az imuthal  inhomogenei t ies  of the mean  radius  of the billet have 
no effect  on the th ickness  of the wall  of the m i o r o c a p i l l a r y  and, in the second place,  az imuthal  inhomogenei t ies  
of  the th ickness  of the wall  of the billet  a re  m o r e  s t rongly  smoothed-out  with pulling than with P/Q =0 and the 
s ame  value of the coeff icient  of  deviat ion f r o m  s i m i l a r i t y  K. 

An analys is  of  the assumpt ions  made  in obtaining Eqs.  (3.1} shows that,  with values  of the p a r a m e t e r s  P 
and Q not exceeding  a few units ,  all  the s ignif icant  (not too sma l l  in compar i son  with unit} coeff icients  A n, B n, 
Cn, D n co r r e spond  to the o r ig ina l  s t a t ement  of the p rob lem.  

In the solution of the p rob l em  it was a s sumed  that  the p a r a m e t e r s  of  the billet  a re  constant  along its 
length. The r e su l t s ,  however ,  can eas i ly  be developed for  the case  where  the az imuthal  inhomogenei t ies  va ry  
along the length of the bil let ,  if  the c h a r a c t e r i s t i c  length L of such changes is suff iciently g rea t ,  L >> l/w. 

The cu rves  obtained for the coeff ic ients  of  the t rans i t ion  were  used to evaluate  the allowance for the 
az imutha l  inhomogenei t ies  of  a billet  f r o m  which, a f ter  pulling, a m i c r o c a p i l l a r y  is obtained with a given al low- 
ance for  the value of the deviat ion of i ts  t r a n s v e r s e  c r o s s  sect ion f r o m  a concentr ic  round r ing.  

The authors  e x p r e s s  the i r  thanks to B. Z. Katsene lenbaum for  his frui t ful  evaluation,  A. I. Leonov for  a 
n u m b e r  of  obse rva t ions ,  I. V. Aleksandrov,  T. V. Bukht iarova,  A. A. Dyachenko, and S. Ya. Fe l ' d  for evaluat ing 
the work  in the var ious  s tages  of  its complet ion.  

L I T E R A T U R E  C I T E D  

1. M . E .  Zhabotinskii  and A. V. Foigel  t, nThe physics  of the forming  of f ibrous l ightgnides,  ~ Zh. Pr ik l .  
Mekh. Tekh.  Fiz . ,  No. 2, 167 (1976). 

2. T . A .  Mar tynova  and V. V. Shevchenko, nWaves in an a x i s y m m e t r i c  gasd ie l ec t r i c  lightguide with r e s o -  
nances  at the wall ,  w Radiotekho l~lektron., 2_!1, No. 7, 1380 (1976}. 

426 


